Chapter 1

Riemann Integration

This brief chapter reviews Riemann integration. Riemann integration uses rectangles to approximate areas under graphs. This chapter begins by carefully presenting the definitions leading to the Riemann integral. The big result in the first section states that a continuous real-valued function on a closed bounded interval is Riemann integrable. The proof depends upon the theorem that continuous functions on closed bounded intervals are uniformly continuous.

The second section of this chapter focuses on several deficiencies of Riemann integration. As we will see, Riemann integration does not do everything we would like an integral to do. These deficiencies provide motivation in future chapters for the development of measures and integration with respect to measures.

Digital sculpture of Bernhard Riemann (1826-1866), whose method of integration is taught in calculus courses. ©Doris Fiebig

1A Review: Riemann Integral

We begin with a few definitions needed before we can define the Riemann integral. Let \mathbf{R} denote the complete ordered field of real numbers.

1.1 Definition partition

Suppose $a, b \in \mathbf{R}$ with $a<b$. A partition of $[a, b]$ is a finite list of the form $x_{0}, x_{1}, \ldots, x_{n}$, where

$$
a=x_{0}<x_{1}<\cdots<x_{n}=b .
$$

We use a partition $x_{0}, x_{1}, \ldots, x_{n}$ of $[a, b]$ to think of $[a, b]$ as a union of closed subintervals, as follows:

$$
[a, b]=\left[x_{0}, x_{1}\right] \cup\left[x_{1}, x_{2}\right] \cup \cdots \cup\left[x_{n-1}, x_{n}\right] .
$$

The next definition introduces clean notation for the infimum and supremum of the values of a function on some subset of its domain.

1.2 Definition notation for infimum and supremum of a function

If f is a real-valued function and A is a subset of the domain of f, then

$$
\inf _{A} f=\inf \{f(x): x \in A\} \quad \text { and } \quad \sup _{A} f=\sup \{f(x): x \in A\} .
$$

The lower and upper Riemann sums, which we now define, approximate the area under the graph of a nonnegative function (or, more generally, the signed area corresponding to a real-valued function).

1.3 Definition lower and upper Riemann sums

Suppose $f:[a, b] \rightarrow \mathbf{R}$ is a bounded function and P is a partition x_{0}, \ldots, x_{n} of $[a, b]$. The lower Riemann sum $L(f, P,[a, b])$ and the upper Riemann sum $U(f, P,[a, b])$ are defined by

$$
L(f, P,[a, b])=\sum_{j=1}^{n}\left(x_{j}-x_{j-1}\right) \inf _{\left[x_{j-1}, x_{j}\right]} f
$$

and

$$
U(f, P,[a, b])=\sum_{j=1}^{n}\left(x_{j}-x_{j-1}\right) \sup _{\left[x_{j-1}, x_{j}\right]} f .
$$

Our intuition suggests that for a partition with only a small gap between consecutive points, the lower Riemann sum should be a bit less than the area under the graph, and the upper Riemann sum should be a bit more than the area under the graph.

The pictures in the next example help convey the idea of these approximations. The base of the $j^{\text {th }}$ rectangle has length $x_{j}-x_{j-1}$ and has height $\inf _{\left[x_{j-1}, x_{j}\right]} f$ for the lower Riemann sum and height sup f for the upper Riemann sum.

$$
\left[x_{j-1}, x_{j}\right]
$$

1.4 Example lower and upper Riemann sums

Define $f:[0,1] \rightarrow \mathbf{R}$ by $f(x)=x^{2}$. Let P_{n} denote the partition $0, \frac{1}{n}, \frac{2}{n}, \ldots, 1$ of $[0,1]$.

$L\left(x^{2}, P_{16},[0,1]\right)$ is the
sum of the areas of these rectangles.
\qquad

The two figures here show the graph of f in red. The infimum of this function f is attained at the left endpoint of each subinterval $\left[\frac{j-1}{n}, \frac{j}{n}\right]$; the supremum is attained at the right endpoint.
\qquad point.

$U\left(x^{2}, P_{16},[0,1]\right)$ is the
sum of the areas of these rectangles.

For the partition P_{n}, we have $x_{j}-x_{j-1}=\frac{1}{n}$ for each $j=1, \ldots, n$. Thus

$$
L\left(x^{2}, P_{n},[0,1]\right)=\frac{1}{n} \sum_{j=1}^{n} \frac{(j-1)^{2}}{n^{2}}=\frac{2 n^{2}-3 n+1}{6 n^{2}}
$$

and

$$
U\left(x^{2}, P_{n},[0,1]\right)=\frac{1}{n} \sum_{j=1}^{n} \frac{j^{2}}{n^{2}}=\frac{2 n^{2}+3 n+1}{6 n^{2}}
$$

$\underline{\text { as you should verify [use the formula } 1+4+9+\cdots+n^{2}=\frac{n\left(2 n^{2}+3 n+1\right)}{6} \text {]. }}$
The next result states that adjoining more points to a partition increases the lower Riemann sum and decreases the upper Riemann sum.

1.5 inequalities with Riemann sums

Suppose $f:[a, b] \rightarrow \mathbf{R}$ is a bounded function and P, P^{\prime} are partitions of $[a, b]$ such that the list defining P is a sublist of the list defining P^{\prime}. Then

$$
L(f, P,[a, b]) \leq L\left(f, P^{\prime},[a, b]\right) \leq U\left(f, P^{\prime},[a, b]\right) \leq U(f, P,[a, b])
$$

Proof To prove the first inequality, suppose P is the partition x_{0}, \ldots, x_{n} and P^{\prime} is the partition $x_{0}^{\prime}, \ldots, x_{N}^{\prime}$ of $[a, b]$. For each $j=1, \ldots, n$, there exist $k \in\{0, \ldots, N-1\}$ and a positive integer m such that $x_{j-1}=x_{k}^{\prime}<x_{k+1}^{\prime}<\cdots<x_{k+m}^{\prime}=x_{j}$. We have

$$
\begin{aligned}
\left(x_{j}-x_{j-1}\right) \inf _{\left[x_{j-1}, x_{j}\right]} f & =\sum_{i=1}^{m}\left(x_{k+i}^{\prime}-x_{k+i-1}^{\prime}\right) \inf _{\left[x_{j-1}, x_{j}\right]} f \\
& \leq \sum_{i=1}^{m}\left(x_{k+i}^{\prime}-x_{k+i-1}^{\prime}\right) \inf _{\left[x_{k+i-1}^{\prime}, x_{k+i}^{\prime}\right]} f .
\end{aligned}
$$

The inequality above implies that $L(f, P,[a, b]) \leq L\left(f, P^{\prime},[a, b]\right)$.
The middle inequality in this result follows from the observation that the infimum of each set of real numbers is less than or equal to the supremum of that set.

The proof of the last inequality in this result is similar to the proof of the first inequality and is left to the reader.

The following result states that if the function is fixed, then each lower Riemann sum is less than or equal to each upper Riemann sum.

1.6 lower Riemann sums \leq upper Riemann sums

Suppose $f:[a, b] \rightarrow \mathbf{R}$ is a bounded function and P, P^{\prime} are partitions of $[a, b]$. Then

$$
L(f, P,[a, b]) \leq U\left(f, P^{\prime},[a, b]\right)
$$

Proof Let $P^{\prime \prime}$ be the partition of $[a, b]$ obtained by merging the lists that define P and P^{\prime}. Then

$$
\begin{aligned}
L(f, P,[a, b]) & \leq L\left(f, P^{\prime \prime},[a, b]\right) \\
& \leq U\left(f, P^{\prime \prime},[a, b]\right) \\
& \leq U\left(f, P^{\prime},[a, b]\right)
\end{aligned}
$$

where all three inequalities above come from 1.5.

We have been working with lower and upper Riemann sums. Now we define the lower and upper Riemann integrals.

1.7 Definition lower and upper Riemann integrals

Suppose $f:[a, b] \rightarrow \mathbf{R}$ is a bounded function. The lower Riemann integral $L(f,[a, b])$ and the upper Riemann integral $U(f,[a, b])$ of f are defined by

$$
L(f,[a, b])=\sup _{P} L(f, P,[a, b])
$$

and

$$
U(f,[a, b])=\inf _{P} U(f, P,[a, b]),
$$

where the supremum and infimum above are taken over all partitions P of $[a, b]$.

In the definition above, we take the supremum (over all partitions) of the lower Riemann sums because adjoining more points to a partition increases the lower Riemann sum (by 1.5) and should provide a more accurate estimate of the area under the graph. Similarly, in the definition above, we take the infimum (over all partitions) of the upper Riemann sums because adjoining more points to a partition decreases the upper Riemann sum (by 1.5) and should provide a more accurate estimate of the area under the graph.

Our first result about the lower and upper Riemann integrals is an easy inequality.

1.8 lower Riemann integral \leq upper Riemann integral

Suppose $f:[a, b] \rightarrow \mathbf{R}$ is a bounded function. Then

$$
L(f,[a, b]) \leq U(f,[a, b])
$$

Proof The desired inequality follows from the definitions and 1.6.

The lower Riemann integral and the upper Riemann integral can both be reasonably considered to be the area under the graph of a function. Which one should we use? The pictures in Example 1.4 suggest that these two quantities are the same for the function in that example; we will soon verify this suspicion. However, as we will see in the next section, there are functions for which the lower Riemann integral does not equal the upper Riemann integral.

Instead of choosing between the lower Riemann integral and the upper Riemann integral, the standard procedure in Riemann integration is to consider only functions for which those two quantities are equal. This decision has the huge advantage of making the Riemann integral behave as we wish with respect to the sum of two functions (see Exercise 4 in this section).

1.9 Definition Riemann integrable; Riemann integral

- A bounded function on a closed bounded interval is called Riemann integrable if its lower Riemann integral equals its upper Riemann integral.
- If $f:[a, b] \rightarrow \mathbf{R}$ is Riemann integrable, then the Riemann integral $\int_{a}^{b} f$ is defined by

$$
\int_{a}^{b} f=L(f,[a, b])=U(f,[a, b])
$$

Let \mathbf{Z} denote the set of integers and \mathbf{Z}^{+}denote the set of positive integers.

1.10 Example computing a Riemann integral

Define $f:[0,1] \rightarrow \mathbf{R}$ by $f(x)=x^{2}$. Then
$U(f,[0,1]) \leq \inf _{n \in \mathbf{Z}^{+}} \frac{2 n^{2}+3 n+1}{6 n^{2}}=\frac{1}{3}=\sup _{n \in \mathbf{Z}^{+}} \frac{2 n^{2}-3 n+1}{6 n^{2}} \leq L(f,[0,1])$,
where the two inequalities above come from Example 1.4 and the two equalities easily follow from dividing the numerators and denominators of both fractions above by n^{2}.

The paragraph above shows that $U(f,[0,1]) \leq \frac{1}{3} \leq L(f,[0,1])$. When combined with 1.8 , this shows that $L(f,[0,1])=U(f,[0,1])=\frac{1}{3}$. Thus f is Riemann integrable and

$$
\int_{0}^{1} f=\frac{1}{3} .
$$

Our definition of Riemann

 integration is actually a small modification of Riemann's definition that was proposed by Gaston Darboux (1842-1917).Now we come to a key result regarding Riemann integration. Uniform continuity provides the major tool that makes the proof work.

1.11 continuous functions are Riemann integrable

Every continuous real-valued function on each closed bounded interval is Riemann integrable.

Proof Suppose $a, b \in \mathbf{R}$ with $a<b$ and $f:[a, b] \rightarrow \mathbf{R}$ is a continuous function (thus by a standard theorem from undergraduate real analysis, f is bounded and is uniformly continuous). Let $\varepsilon>0$. Because f is uniformly continuous, there exists $\delta>0$ such that

$$
|f(s)-f(t)|<\varepsilon \text { for all } s, t \in[a, b] \text { with }|s-t|<\delta
$$

Let $n \in \mathbf{Z}^{+}$be such that $\frac{b-a}{n}<\delta$.
Let P be the equally spaced partition $a=x_{0}, x_{1}, \ldots, x_{n}=b$ of $[a, b]$ with

$$
x_{j}-x_{j-1}=\frac{b-a}{n}
$$

for each $j=1, \ldots, n$. Then

$$
\begin{aligned}
U(f,[a, b])-L(f,[a, b]) & \leq U(f, P,[a, b])-L(f, P,[a, b]) \\
& =\frac{b-a}{n} \sum_{j=1}^{n}\left(\sup _{\left[x_{j-1}, x_{j}\right]} f-\inf _{\left[x_{j-1}, x_{j}\right]} f\right) \\
& \leq(b-a) \varepsilon
\end{aligned}
$$

where the first equality follows from the definitions of $U(f,[a, b])$ and $L(f,[a, b])$ and the last inequality follows from 1.12.

We have shown that $U(f,[a, b])-L(f,[a, b]) \leq(b-a) \varepsilon$ for all $\varepsilon>0$. Thus 1.8 implies that $L(f,[a, b])=U(f,[a, b])$. Hence f is Riemann integrable.

An alternative notation for $\int_{a}^{b} f$ is $\int_{a}^{b} f(x) d x$. Here x is a dummy variable, so we could also write $\int_{a}^{b} f(t) d t$ or use another variable. This notation becomes useful when we want to write something like $\int_{0}^{1} x^{2} d x$ instead of using function notation.

The next result gives a frequently used estimate for a Riemann integral.

1.13 bounds on Riemann integral

Suppose $f:[a, b] \rightarrow \mathbf{R}$ is Riemann integrable. Then

$$
(b-a) \inf _{[a, b]} f \leq \int_{a}^{b} f \leq(b-a) \sup _{[a, b]} f
$$

Proof Let P be the trivial partition $a=x_{0}, x_{1}=b$. Then

$$
(b-a) \inf _{[a, b]} f=L(f, P,[a, b]) \leq L(f,[a, b])=\int_{a}^{b} f,
$$

proving the first inequality in the result.
The second inequality in the result is proved similarly and is left to the reader.

EXERCISES 1A

1 Suppose $f:[a, b] \rightarrow \mathbf{R}$ is a bounded function such that

$$
L(f, P,[a, b])=U(f, P,[a, b])
$$

for some partition P of $[a, b]$. Prove that f is a constant function on $[a, b]$.
2 Suppose $a \leq s<t \leq b$. Define $f:[a, b] \rightarrow \mathbf{R}$ by

$$
f(x)= \begin{cases}1 & \text { if } s<x<t \\ 0 & \text { otherwise }\end{cases}
$$

Prove that f is Riemann integrable on $[a, b]$ and that $\int_{a}^{b} f=t-s$.
3 Suppose $f:[a, b] \rightarrow \mathbf{R}$ is a bounded function. Prove that f is Riemann integrable if and only if for each $\varepsilon>0$, there exists a partition P of $[a, b]$ such that

$$
U(f, P,[a, b])-L(f, P,[a, b])<\varepsilon .
$$

4 Suppose $f, g:[a, b] \rightarrow \mathbf{R}$ are Riemann integrable. Prove that $f+g$ is Riemann integrable on $[a, b]$ and

$$
\int_{a}^{b}(f+g)=\int_{a}^{b} f+\int_{a}^{b} g .
$$

5 Suppose $f:[a, b] \rightarrow \mathbf{R}$ is Riemann integrable. Prove that the function $-f$ is Riemann integrable on $[a, b]$ and

$$
\int_{a}^{b}(-f)=-\int_{a}^{b} f
$$

6 Suppose $f:[a, b] \rightarrow \mathbf{R}$ is Riemann integrable. Suppose $g:[a, b] \rightarrow \mathbf{R}$ is a function such that $g(x)=f(x)$ for all except finitely many $x \in[a, b]$. Prove that g is Riemann integrable on $[a, b]$ and

$$
\int_{a}^{b} g=\int_{a}^{b} f
$$

7 Suppose $f:[a, b] \rightarrow \mathbf{R}$ is a bounded function. For $n \in \mathbf{Z}^{+}$, let P_{n} denote the partition that divides $[a, b]$ into 2^{n} intervals of equal size. Prove that

$$
L(f,[a, b])=\lim _{n \rightarrow \infty} L\left(f, P_{n},[a, b]\right) \text { and } U(f,[a, b])=\lim _{n \rightarrow \infty} U\left(f, P_{n},[a, b]\right)
$$

8 Suppose $f:[a, b] \rightarrow \mathbf{R}$ is Riemann integrable. Prove that

$$
\int_{a}^{b} f=\lim _{n \rightarrow \infty} \frac{b-a}{n} \sum_{j=1}^{n} f\left(a+\frac{j(b-a)}{n}\right) .
$$

9 Suppose $f:[a, b] \rightarrow \mathbf{R}$ is Riemann integrable. Prove that if $c, d \in \mathbf{R}$ and $a \leq c<d \leq b$, then f is Riemann integrable on $[c, d]$.
[To say that f is Riemann integrable on $[c, d]$ means that f with its domain restricted to $[c, d]$ is Riemann integrable.]

10 Suppose $f:[a, b] \rightarrow \mathbf{R}$ is a bounded function and $c \in(a, b)$. Prove that f is Riemann integrable on $[a, b]$ if and only if f is Riemann integrable on $[a, c]$ and f is Riemann integrable on $[c, b]$. Furthermore, prove that if these conditions hold, then

$$
\int_{a}^{b} f=\int_{a}^{c} f+\int_{c}^{b} f
$$

11 Suppose $f:[a, b] \rightarrow \mathbf{R}$ is Riemann integrable. Define $F:[a, b] \rightarrow \mathbf{R}$ by

$$
F(t)= \begin{cases}0 & \text { if } t=a \\ \int_{a}^{t} f & \text { if } t \in(a, b]\end{cases}
$$

Prove that F is continuous on $[a, b]$.
12 Suppose $f:[a, b] \rightarrow \mathbf{R}$ is Riemann integrable. Prove that $|f|$ is Riemann integrable and that

$$
\left|\int_{a}^{b} f\right| \leq \int_{a}^{b}|f|
$$

13 Suppose $f:[a, b] \rightarrow \mathbf{R}$ is an increasing function, meaning that $c, d \in[a, b]$ with $c<d$ implies $f(c) \leq f(d)$. Prove that f is Riemann integrable on $[a, b]$.

14 Suppose f_{1}, f_{2}, \ldots is a sequence of Riemann integrable functions on $[a, b]$ such that f_{1}, f_{2}, \ldots converges uniformly on $[a, b]$ to a function $f:[a, b] \rightarrow \mathbf{R}$. Prove that f is Riemann integrable and

$$
\int_{a}^{b} f=\lim _{n \rightarrow \infty} \int_{a}^{b} f_{n}
$$

1B Riemann Integral Is Not Good Enough

The Riemann integral works well enough to be taught to millions of calculus students around the world each year. However, the Riemann integral has several deficiencies. In this section, we discuss the following three issues:

- Riemann integration does not handle functions with many discontinuities;
- Riemann integration does not handle unbounded functions;
- Riemann integration does not work well with limits.

In Chapter 2, we will start to construct a theory to remedy these problems.
We begin with the following example of a function that is not Riemann integrable.

1.14 Example a function that is not Riemann integrable

Define $f:[0,1] \rightarrow \mathbf{R}$ by

$$
f(x)= \begin{cases}1 & \text { if } x \text { is rational } \\ 0 & \text { if } x \text { is irrational }\end{cases}
$$

If $[a, b] \subset[0,1]$ with $a<b$, then

$$
\inf _{[a, b]} f=0 \quad \text { and } \quad \sup _{[a, b]} f=1
$$

because $[a, b]$ contains an irrational number and contains a rational number. Thus $L(f, P,[0,1])=0$ and $U(f, P,[0,1])=1$ for every partition P of $[0,1]$. Hence $L(f,[0,1])=0$ and $U(f,[0,1])=1$. Because $L(f,[0,1]) \neq U(f,[0,1])$, we conclude that f is not Riemann integrable.

This example is disturbing because (as we will see later), there are far fewer rational numbers than irrational numbers. Thus f should, in some sense, have integral 0 . However, the Riemann integral of f is not defined.

Trying to apply the definition of the Riemann integral to unbounded functions would lead to undesirable results, as shown in the next example.

1.15 Example Riemann integration does not work with unbounded functions

Define $f:[0,1] \rightarrow \mathbf{R}$ by

$$
f(x)= \begin{cases}\frac{1}{\sqrt{x}} & \text { if } 0<x \leq 1 \\ 0 & \text { if } x=0\end{cases}
$$

If $x_{0}, x_{1}, \ldots, x_{n}$ is a partition of $[0,1]$, then $\sup _{\left[x_{0}, x_{1}\right]} f=\infty$. Thus if we tried to apply the definition of the upper Riemann sum to f, we would have $U(f, P,[0,1])=\infty$ for every partition P of $[0,1]$.

However, we should consider the area under the graph of f to be 2 , not ∞, because

$$
\lim _{a \downarrow 0} \int_{a}^{1} f=\lim _{a \downarrow 0}(2-2 \sqrt{a})=2
$$

Calculus courses deal with the previous example by defining $\int_{0}^{1} \frac{1}{\sqrt{x}} d x$ to be $\lim _{a \downarrow 0} \int_{a}^{1} \frac{1}{\sqrt{x}} d x$. If using this approach and

$$
f(x)=\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{1-x}}
$$

then we would define $\int_{0}^{1} f$ to be

$$
\lim _{a \downarrow 0} \int_{a}^{1 / 2} f+\lim _{b \uparrow 1} \int_{1 / 2}^{b} f
$$

However, the idea of taking Riemann integrals over subdomains and then taking limits can fail with more complicated functions, as shown in the next example.

1.16 Example area seems to make sense, but Riemann integral is not defined

Let r_{1}, r_{2}, \ldots be a sequence that includes each rational number in $(0,1)$ exactly once and that includes no other numbers. For $k \in \mathbf{Z}^{+}$, define $f_{k}:[0,1] \rightarrow \mathbf{R}$ by

$$
f_{k}(x)= \begin{cases}\frac{1}{\sqrt{x-r_{k}}} & \text { if } x>r_{k} \\ 0 & \text { if } x \leq r_{k}\end{cases}
$$

Define $f:[0,1] \rightarrow[0, \infty]$ by

$$
f(x)=\sum_{k=1}^{\infty} \frac{f_{k}(x)}{2^{k}}
$$

Because every nonempty open subinterval of $[0,1]$ contains a rational number, the function f is unbounded on every such subinterval. Thus the Riemann integral of f is undefined on every subinterval of $[0,1]$ with more than one element.

However, the area under the graph of each f_{k} is less than 2 . The formula defining f then shows that we should expect the area under the graph of f to be less than 2 rather than undefined.

The next example shows that the pointwise limit of a sequence of Riemann integrable functions bounded by 1 need not be Riemann integrable.

1.17 Example Riemann integration does not work well with pointwise limits

Let r_{1}, r_{2}, \ldots be a sequence that includes each rational number in $[0,1]$ exactly once and that includes no other numbers. For $k \in \mathbf{Z}^{+}$, define $f_{k}:[0,1] \rightarrow \mathbf{R}$ by

$$
f_{k}(x)= \begin{cases}1 & \text { if } x \in\left\{r_{1}, \ldots, r_{k}\right\} \\ 0 & \text { otherwise }\end{cases}
$$

Then each f_{k} is Riemann integrable and $\int_{0}^{1} f_{k}=0$, as you should verify.

Define $f:[0,1] \rightarrow \mathbf{R}$ by

$$
f(x)= \begin{cases}1 & \text { if } x \text { is rational } \\ 0 & \text { if } x \text { is irrational }\end{cases}
$$

Clearly

$$
\lim _{k \rightarrow \infty} f_{k}(x)=f(x) \quad \text { for each } x \in[0,1]
$$

However, f is not Riemann integrable (see Example 1.14) even though f is the pointwise limit of a sequence of integrable functions bounded by 1.

Because analysis relies heavily upon limits, a good theory of integration should allow for interchange of limits and integrals, at least when the functions are appropriately bounded. Thus the previous example points out a serious deficiency in Riemann integration.

Now we come to a positive result, but as we will see, even this result indicates that Riemann integration has some problems.

1.18 interchanging Riemann integral and limit

Suppose $a, b, M \in \mathbf{R}$ with $a<b$. Suppose f_{1}, f_{2}, \ldots is a sequence of Riemann integrable functions on $[a, b]$ such that

$$
\left|f_{k}(x)\right| \leq M
$$

for all $k \in \mathbf{Z}^{+}$and all $x \in[a, b]$. Suppose $\lim _{k \rightarrow \infty} f_{k}(x)$ exists for each $x \in[a, b]$. Define $f:[a, b] \rightarrow \mathbf{R}$ by

$$
f(x)=\lim _{k \rightarrow \infty} f_{k}(x)
$$

If f is Riemann integrable on $[a, b]$, then

$$
\int_{a}^{b} f=\lim _{k \rightarrow \infty} \int_{a}^{b} f_{k}
$$

The result above suffers from two problems. The first problem is the undesirable hypothesis that the limit function f is Riemann integrable. Ideally, that property would follow from the other hypotheses, but Example 1.17 shows that this need not be true.

The second problem with the result above is that its proof seems to be more intricate than the proofs of other results involving Riemann integration. We do not give a proof here of the result above. A clean proof of a stronger result is given in

The difficulty in finding a simple Riemann-integration-based proof of the result above suggests that Riemann integration is not the ideal theory of integration. Chapter 3, using the tools of measure theory that we develop starting with the next chapter.

EXERCISES 1B

1 Define $f:[0,1] \rightarrow \mathbf{R}$ as follows:

$$
f(a)= \begin{cases}0 & \text { if } a \text { is irrational } \\ \frac{1}{n} & \text { if } a \text { is rational and } n \text { is the smallest positive integer } \\ & \text { such that } a=\frac{m}{n} \text { for some integer } m\end{cases}
$$

Show that f is Riemann integrable and compute $\int_{0}^{1} f$.
2 Suppose $f:[a, b] \rightarrow \mathbf{R}$ is a bounded function. Prove that f is Riemann integrable if and only if

$$
L(-f,[a, b])=-L(f,[a, b])
$$

3 Suppose $f, g:[a, b] \rightarrow \mathbf{R}$ are bounded functions. Prove that

$$
L(f,[a, b])+L(g,[a, b]) \leq L\left(f+g_{,}[a, b]\right)
$$

and

$$
U(f+g,[a, b]) \leq U(f,[a, b])+U(g,[a, b])
$$

4 Give an example of bounded functions $f, g:[0,1] \rightarrow \mathbf{R}$ such that

$$
L(f,[0,1])+L(g,[0,1])<L(f+g,[0,1])
$$

and

$$
U(f+g,[0,1])<U(f,[0,1])+U(g,[0,1])
$$

5 Give an example of a sequence of continuous real-valued functions f_{1}, f_{2}, \ldots on $[0,1]$ and a continuous real-valued function f on $[0,1]$ such that

$$
f(x)=\lim _{k \rightarrow \infty} f_{k}(x)
$$

for each $x \in[0,1]$ but

$$
\int_{0}^{1} f \neq \lim _{k \rightarrow \infty} \int_{0}^{1} f_{k}
$$

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/), which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

